Notation
Math Symbols
Vector is denoted as bold letter, e.g. a , Matrix is denoted as capital letter, e.g. A , a i means the i th element of a , a ij means the ( i , j ) th element of A
All vectors are column vectors
Z is the set of integers.
Q is the set of rational numbers.
R is the set of real numbers.
C is the set of complex numbers.
F is a filtration.
P is a probability measure.
[ n ] := { 1 , 2 , ⋯ , n }
Z n := { 0 , 1 , ⋯ , n − 1 }
Z ≥ n := { i ∣ i ∈ Z ∧ i ≥ n }
R := R ∪ { − ∞ , + ∞ }
For X ⊆ R , X + := { x ∈ X ∣ x > 0 }
For X ⊆ R , X ∗ := { x ∈ X ∣ x ≥ 0 }
For a , b ∈ R n , a < b := ∀ i , a i ≤ b i
Class of sets is denoted as calligraphic letter, e.g. A , B , F
P ( X ) is the power set of X
⨄ represents the union of disjoint sets.
A # is the adjoint matrix of A
( X , τ ) is a topological space, briefly written as X
B ( X ) := σ ( τ ) , where ( X , τ ) is a topological space
∧ represents the and for logic, min for function
∨ represents the or for logic, max for function
A ⟹ B means ( A → B ) is True
A ⟺ B means ( A → B ) ∧ ( B → A ) is True
Computer Symbols
Local network is denoted as capital letter, e.g. A ,B ,C
Host in local network is denoted as small letter, e.g. a ,b ,c located in local network A ,B ,C
Public ip is denoted as Greek letter, e.g. α ,γ ,β
Hosts in the same local network are distinguished by subscripts, e.g. a 1 ,a 2 ,a 5 located in local network A .
Folders with clear dependencies
dependency_graph graph TD
1["数学分析/实数构造/整数"] --> 0["朴素集合论/初等数论"]
3["朴素集合论/naive-set-theory-1"] --> 2["朴素集合论/naive-set-theory-2"]
1["数学分析/实数构造/整数"] --> 2["朴素集合论/naive-set-theory-2"]
0["朴素集合论/初等数论"] --> 2["朴素集合论/naive-set-theory-2"]
5["数理逻辑/命题逻辑"] --> 4["数理逻辑/命题逻辑演算"]
5["数理逻辑/命题逻辑"] --> 6["数理逻辑/一阶逻辑"]
4["数理逻辑/命题逻辑演算"] --> 6["数理逻辑/一阶逻辑"]
2["朴素集合论/naive-set-theory-2"] --> 5["数理逻辑/命题逻辑"]
8["抽象代数/群论(一)"] --> 7["抽象代数/群论(置换群)"]
0["朴素集合论/初等数论"] --> 7["抽象代数/群论(置换群)"]
8["抽象代数/群论(一)"] --> 9["抽象代数/群论(二)"]
10["抽象代数/同态映射"] --> 9["抽象代数/群论(二)"]
12["抽象代数/环论(一)"] --> 11["抽象代数/环论(有序环)"]
8["抽象代数/群论(一)"] --> 10["抽象代数/同态映射"]
8["抽象代数/群论(一)"] --> 13["抽象代数/群论(幂运算)"]
1["数学分析/实数构造/整数"] --> 13["抽象代数/群论(幂运算)"]
12["抽象代数/环论(一)"] --> 14["抽象代数/环论(商域)"]
12["抽象代数/环论(一)"] --> 15["抽象代数/环论(幂运算)"]
11["抽象代数/环论(有序环)"] --> 15["抽象代数/环论(幂运算)"]
1["数学分析/实数构造/整数"] --> 15["抽象代数/环论(幂运算)"]
8["抽象代数/群论(一)"] --> 16["抽象代数/群论(循环群)"]
13["抽象代数/群论(幂运算)"] --> 16["抽象代数/群论(循环群)"]
0["朴素集合论/初等数论"] --> 16["抽象代数/群论(循环群)"]
8["抽象代数/群论(一)"] --> 12["抽象代数/环论(一)"]
9["抽象代数/群论(二)"] --> 12["抽象代数/环论(一)"]
18["抽象代数/环论(二)"] --> 17["抽象代数/环论(三)"]
0["朴素集合论/初等数论"] --> 17["抽象代数/环论(三)"]
16["抽象代数/群论(循环群)"] --> 17["抽象代数/环论(三)"]
12["抽象代数/环论(一)"] --> 18["抽象代数/环论(二)"]
10["抽象代数/同态映射"] --> 18["抽象代数/环论(二)"]
9["抽象代数/群论(二)"] --> 19["抽象代数/群论(高等群论)"]
12["抽象代数/环论(一)"] --> 20["抽象代数/环论(多项式环)"]
21["同态映射"] --> 20["抽象代数/环论(多项式环)"]
3["朴素集合论/naive-set-theory-1"] --> 8["抽象代数/群论(一)"]
22["数学分析/实数构造/自然数"] --> 8["抽象代数/群论(一)"]
7["抽象代数/群论(置换群)"] --> 23["抽象代数/群论(群作用)"]
25["数学分析/converge"] --> 24["数学分析/funct-limit"]
27["数学分析/real-number"] --> 26["数学分析/complex-number"]
28["数学分析/向量空间"] --> 26["数学分析/complex-number"]
30["抽象代数/向量空间"] --> 29["数学分析/derivate"]
24["数学分析/funct-limit"] --> 29["数学分析/derivate"]
32["数学分析/metric-space"] --> 31["数学分析/complex-seq-series"]
33["测度论与概率论/拓扑空间"] --> 31["数学分析/complex-seq-series"]
25["数学分析/converge"] --> 31["数学分析/complex-seq-series"]
34["数学分析/series"] --> 31["数学分析/complex-seq-series"]
27["数学分析/real-number"] --> 32["数学分析/metric-space"]
22["数学分析/实数构造/自然数"] --> 1["数学分析/实数构造/整数"]
10["抽象代数/同态映射"] --> 1["数学分析/实数构造/整数"]
8["抽象代数/群论(一)"] --> 1["数学分析/实数构造/整数"]
12["抽象代数/环论(一)"] --> 1["数学分析/实数构造/整数"]
11["抽象代数/环论(有序环)"] --> 1["数学分析/实数构造/整数"]
1["数学分析/实数构造/整数"] --> 35["数学分析/实数构造/有理数"]
14["抽象代数/环论(商域)"] --> 35["数学分析/实数构造/有理数"]
11["抽象代数/环论(有序环)"] --> 35["数学分析/实数构造/有理数"]
3["朴素集合论/naive-set-theory-1"] --> 22["数学分析/实数构造/自然数"]
35["数学分析/实数构造/有理数"] --> 36["数学分析/实数构造/实数"]
11["抽象代数/环论(有序环)"] --> 36["数学分析/实数构造/实数"]
27["数学分析/real-number"] --> 25["数学分析/converge"]
25["数学分析/converge"] --> 34["数学分析/series"]
22["数学分析/实数构造/自然数"] --> 27["数学分析/real-number"]
1["数学分析/实数构造/整数"] --> 27["数学分析/real-number"]
35["数学分析/实数构造/有理数"] --> 27["数学分析/real-number"]
36["数学分析/实数构造/实数"] --> 27["数学分析/real-number"]
30["抽象代数/向量空间"] --> 37["复分析/derivative"]
39["linear-algebra/matrix"] --> 38["linear-algebra/rank"]
12["抽象代数/环论(一)"] --> 39["linear-algebra/matrix"]
39["linear-algebra/matrix"] --> 40["linear-algebra/diagonalization"]
39["linear-algebra/matrix"] --> 41["linear-algebra/norm"]
2["朴素集合论/naive-set-theory-2"] --> 42["测度论与概率论/class-of-sets"]
33["测度论与概率论/拓扑空间"] --> 42["测度论与概率论/class-of-sets"]
44["测度论与概率论/measure"] --> 43["测度论与概率论/L-S-measure"]
3["朴素集合论/naive-set-theory-1"] --> 45["测度论与概率论/order-topology"]
33["测度论与概率论/拓扑空间"] --> 45["测度论与概率论/order-topology"]
42["测度论与概率论/class-of-sets"] --> 46["测度论与概率论/Borel-R"]
33["测度论与概率论/拓扑空间"] --> 47["测度论与概率论/homeomorphism"]
42["测度论与概率论/class-of-sets"] --> 48["测度论与概率论/semi-ring"]
33["测度论与概率论/拓扑空间"] --> 49["测度论与概率论/relative-topology"]
32["数学分析/metric-space"] --> 33["测度论与概率论/拓扑空间"]
42["测度论与概率论/class-of-sets"] --> 44["测度论与概率论/measure"]
32["数学分析/metric-space"] --> 50["测度论与概率论/product-metric-space"]
33["测度论与概率论/拓扑空间"] --> 50["测度论与概率论/product-metric-space"]
指向原始笔记的链接
linear-algebra
数学分析
抽象代
数理逻辑
朴素集合论
测度论与概率论