ls_mlkit.optimizer.kfa.kfa_optimizer module¶
- class ls_mlkit.optimizer.kfa.kfa_optimizer.KFAOptimizer(params, base_optimizer: Optimizer, model: Module, user_config: UserConfig, kfa: KFA, **kwargs)[source]¶
Bases:
Optimizer- load_state_dict(state_dict)[source]¶
Load the optimizer state.
- Parameters:
state_dict (dict) – optimizer state. Should be an object returned from a call to
state_dict().
Warning
Make sure this method is called after initializing
torch.optim.lr_scheduler.LRScheduler, as calling it beforehand will overwrite the loaded learning rates.Note
The names of the parameters (if they exist under the “param_names” key of each param group in
state_dict()) will not affect the loading process. To use the parameters’ names for custom cases (such as when the parameters in the loaded state dict differ from those initialized in the optimizer), a customregister_load_state_dict_pre_hookshould be implemented to adapt the loaded dict accordingly. Ifparam_namesexist in loaded state dictparam_groupsthey will be saved and override the current names, if present, in the optimizer state. If they do not exist in loaded state dict, the optimizerparam_nameswill remain unchanged.Example
>>> # xdoctest: +SKIP >>> model = torch.nn.Linear(10, 10) >>> optim = torch.optim.SGD(model.parameters(), lr=3e-4) >>> scheduler1 = torch.optim.lr_scheduler.LinearLR( ... optim, ... start_factor=0.1, ... end_factor=1, ... total_iters=20, ... ) >>> scheduler2 = torch.optim.lr_scheduler.CosineAnnealingLR( ... optim, ... T_max=80, ... eta_min=3e-5, ... ) >>> lr = torch.optim.lr_scheduler.SequentialLR( ... optim, ... schedulers=[scheduler1, scheduler2], ... milestones=[20], ... ) >>> lr.load_state_dict(torch.load("./save_seq.pt")) >>> # now load the optimizer checkpoint after loading the LRScheduler >>> optim.load_state_dict(torch.load("./save_optim.pt"))
- state_dict()[source]¶
Return the state of the optimizer as a
dict.It contains two entries:
state: a Dict holding current optimization state. Its contentdiffers between optimizer classes, but some common characteristics hold. For example, state is saved per parameter, and the parameter itself is NOT saved.
stateis a Dictionary mapping parameter ids to a Dict with state corresponding to each parameter.
param_groups: a List containing all parameter groups where eachparameter group is a Dict. Each parameter group contains metadata specific to the optimizer, such as learning rate and weight decay, as well as a List of parameter IDs of the parameters in the group. If a param group was initialized with
named_parameters()the names content will also be saved in the state dict.
NOTE: The parameter IDs may look like indices but they are just IDs associating state with param_group. When loading from a state_dict, the optimizer will zip the param_group
params(int IDs) and the optimizerparam_groups(actualnn.Parameters) in order to match state WITHOUT additional verification.A returned state dict might look something like:
{ 'state': { 0: {'momentum_buffer': tensor(...), ...}, 1: {'momentum_buffer': tensor(...), ...}, 2: {'momentum_buffer': tensor(...), ...}, 3: {'momentum_buffer': tensor(...), ...} }, 'param_groups': [ { 'lr': 0.01, 'weight_decay': 0, ... 'params': [0] 'param_names' ['param0'] (optional) }, { 'lr': 0.001, 'weight_decay': 0.5, ... 'params': [1, 2, 3] 'param_names': ['param1', 'layer.weight', 'layer.bias'] (optional) } ] }
- step(closure=None)[source]¶
Perform a single optimization step to update parameter.
- Parameters:
closure (Callable) – A closure that reevaluates the model and returns the loss. Optional for most optimizers.
- zero_grad()[source]¶
Reset the gradients of all optimized
torch.Tensors.- Parameters:
set_to_none (bool, optional) –
Instead of setting to zero, set the grads to None. Default:
TrueThis will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example:
When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently.
If the user requests
zero_grad(set_to_none=True)followed by a backward pass,.grads are guaranteed to be None for params that did not receive a gradient.torch.optimoptimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).