ls_mlkit.diffuser.sde.corrector module¶
- class ls_mlkit.diffuser.sde.corrector.Corrector(sde: SDE, score_fn: object, snr: float, n_steps: int)[source]¶
Bases:
ABCThe abstract class for a corrector algorithm.
- abstractmethod update_fn(x: Tensor, t: Tensor, mask=None)[source]¶
One update of the corrector.
- Parameters:
x – A PyTorch tensor representing the current state
t – A PyTorch tensor representing the current time step.
- Returns:
A PyTorch tensor of the next state. x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising.
- Return type:
x
- class ls_mlkit.diffuser.sde.corrector.LangevinCorrector(sde: SDE, score_fn: object, snr: float, n_steps: int, n_dim: int = 2)[source]¶
Bases:
Corrector- update_fn(x: Tensor, t: Tensor, mask=None)[source]¶
One update of the corrector.
- Parameters:
x – A PyTorch tensor representing the current state
t – A PyTorch tensor representing the current time step.
- Returns:
A PyTorch tensor of the next state. x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising.
- Return type:
x
- class ls_mlkit.diffuser.sde.corrector.NoneCorrector(sde, score_fn, snr, n_steps)[source]¶
Bases:
CorrectorAn empty corrector that does nothing.
- update_fn(x, t, mask=None)[source]¶
One update of the corrector.
- Parameters:
x – A PyTorch tensor representing the current state
t – A PyTorch tensor representing the current time step.
- Returns:
A PyTorch tensor of the next state. x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising.
- Return type:
x